Daniel Maestro Watsonen tesi defentsa

Atzera

Daniel Maestro Watsonen tesi defentsa

TESIA

Daniel Maestro Watsonen tesi defentsa

Tesiaren izenburua: “3D Inspection Methods for Specular or Partially Specular Surfaces”. SOBRESALIENTE kalifikazioa lortu du eta DOCTOR INTERNACIONAL mentzioa izan du.

2020·04·23

$titulo.getData()


  • Tesiaren izenburua: “3D Inspection Methods for Specular or Partially Specular Surfaces”.
  • Epaimahaia:
    • Mahaiburua: Viviane Thérèse Marie Cadenat (LAAS-CNRS)
    • Mahaikidea: Dimitrios Chrysostomos Chrysostomou (Aalborg University)
    • Mahaikidea: Aritz Legarda Cristobal (Das-nano)
    • Mahaikidea: Bertrand Laurent Aurélien Vandeportaele (UNIVERSITÉ PAUL SABATIER)
    • Idazkaria: Luka Eciolaza Echeverria (Mondragon Unibertsitatea)

Laburpena

Teknika deflektometrikoak tresna baliotsuak dira gainazal espekular edo distiratsuen kalitate kontrol automatikoa gauzatzeko. Teknika hauetan, kamera bat erabiltzen da ikuskatu beharreko gainazalean islatutako erreferentziazko patroi bat behatzeko, eta isladapen espekularrek gainazalen bektore normalengan duten menpekotasuna ustiatzen dute irudietatik informazio geometrikoa berreskuratzeko. Zenbait industria-aplikaziotan deflektometria jada erabiltzen bada ere –adibidez, betaurrekoen edo autoen karrozerien kalitate kontrolean-, oraindik badaude hobetu beharreko hainbat esparru. Batetik, deflektometria kuantitatiboak aukera ematen du gainazal baten bektore-eremu normala eta 3D forma lortzeko, baina gaur egun teknika hauek ez dute beren sentsibilitate lokal guztia aprobetxatzen kalibrazio-akatsek zehaztasun globalean duten eraginagatik. Bestetik, deflektometria kualitatiboa neurketa absoluturik egin gabe gainazal akatsak antzemateko erabili daiteke, kalibrazio-eskakizun murriztuekin sentsibilitate lokala ustiatuz.

Hala ere, teknika horiek algoritmoen garapenean esfortzu handia ekar dezakeen prozesamendu bat eskatzen dute, bereziki bere baitan subjektiboak diren akats estetikoetarako. Hala ere, teknika horiek algoritmoen garapenean esfortzu handia ekar dezakeen prozesamendu bat eskatzen dute, bereziki bere baitan subjektiboak diren akats estetikoetarako.

Tesi honen lehen zatiaren helburua adkizizio sistema osatzen duten gailuek eta horien kalibrazioek neurketa kuantitatiboei nola eragiten dieten hobeto ulertzen laguntzea da. Hainbat errore-iturri hartzen dira kontuan, besteak beste kameraren kalibrazioaren ziurgabetasuna, eta argi-patroiak sortzeko erabilitako LCD pantailen zenbait ezaugarri ez-ideal. Neurketa errealetan eta simulazioetan egindako esperimentuek erakusten dute LCD pantailaren deformazioak eta kameraren kalibrazioak eragindako erroreak direla neurketen akats eta ziurgabetasun iturri nagusiak. Tesiaren bigarren zatian, datu deflektometrikoetatik abiatuz, inperfekzio geometrikoak eta testura-akatsak identifikatzeko ikaskuntza sakoneko metodoen erabilera ikertzen da. Helburu honekin, irudietatik informazio fotometrikoa eta geometrikoa atera eta konbinatzen duten sare neuronal konboluzionaletan oinarritutako bi arkitektura proposatzen dira: bata, lagin akastunak automatikoki sailkatzeko; eta, bestea, laginetako eremu akastunak automatikoki segmentatzeko. Automobilgintza industriako kasu praktiko baten lortutako emaitzek erakusten dute erabilitako arkitekturek datu deflektometrikoetatik ezaugarri esanguratsuak ikas ditzaketela, erabiltzaileak emandako adibide multzo batean oinarrituta gainazal akatsak sailkatu eta segmentatzea ahalbidetuz.