El alumno Pablo García Michelena obtuvo la calificación SOBRESALIENTE CUM LAUDE

Atrás

El alumno Pablo García Michelena obtuvo la calificación SOBRESALIENTE CUM LAUDE

TESIS

El alumno Pablo García Michelena obtuvo la calificación SOBRESALIENTE CUM LAUDE

03·11·2023

$titulo.getData()


  • Título de tesis: Enhancement of Vacuum Induction Melting through Numerical and Experimental Investigation

Tribunal:

  • Presidencia: Ricardo Torres Cámara (Universitat Politècnica de Catalunya)
  • Vocalía: Carl Slater (University of Warwick)
  • Vocalía: Iñaki Hurtado Hurtado (Mondragon Unibertsitatea)
  • Vocalía: Iñaki Madariaga Rodríguez (ITP Aero)
  • Secretaría: Daniel Bernal Rodriguez (Mondragon Unibertsitatea)

Resumen:

La industria aeronáutica es reconocida por su notable nivel de innovación y desarrollo continuo de sus productos y procesos. En este campo, se persigue constantemente mejorar la eficiencia termodinámica de los ciclos de los motores mediante el uso de materiales de alto rendimiento, como las aleaciones base de níquel en los componentes de la turbina y compresor. La composición química compleja y precisa de estas aleaciones requiere procesos de fabricación avanzadas. Para lograr componentes de calidad metalúrgica superior, con geometrías complejas y criterios cercanos a la forma final, se combinan de manera efectiva las tecnologías de moldeo a la cera perdida y la fusión por inducción en vacío o Vacuum Induction Melting (VIM).

El éxito de la tecnología VIM radica en su atmósfera de vacío e inerte, que minimiza la oxidación y la eliminación de elementos aleantes del metal líquido, asegurando una composición precisa del componente final. Además, logra una alta eficiencia eléctrica mediante la inducción magnética y el calentamiento resistivo dentro del propio metal a fundir, junto con ciclos de fusión rápidos. Sin embargo, el control complejo del proceso presenta desafíos debido a la coexistencia de múltiples fenómenos físicos durante la fusión y diversas variables del proceso, dificultando la optimización del proceso. En este campo, las herramientas numéricas basadas en modelos es la solución óptima debido a su equilibrio entre precisión, velocidad y coste.

El objetivo de este proyecto de investigación es mejorar el proceso de fusión VIM mediante el desarrollo de modelos multi-físicos que abarquen los principales fenómenos físicos, incluyendo campos magnéticos, dinámica de fluidos y transferencia de calor y el acoplamiento entre las mismas. Estos modelos integrarán y capturarán las interacciones entre estos diferentes campos, permitiendo también el estudio del impacto de diversas variables del proceso, así como ahondar en la compresión de las dinámicas internas del proceso VIM.

Para validar los estudios teóricos, es necesaria una comparación y correlación con referencias experimentales. Por lo tanto, se han diseñado y realizado ensayos específicos en un horno VIM a escala de laboratorio para obtener referencias de las variables de fusión. Así, se han correlacionado con los resultados numéricos y determinado la incertidumbre de las simulaciones, pudiendo corregir la desviación en los casos necesarios. Una vez obtenida la herramienta validada, se han considerado varios casos de estudio, incorporando diferentes configuraciones de hornos VIM a escala industrial y condiciones operativas dinámicas basadas en condiciones operativas reales de fusión. En última instancia, se propone un procedimiento de fusión mejorado con el objetivo de aumentar la eficiencia térmica y reducir el tiempo del ciclo del proceso.