Goi Eskola

Escuela Politécnica

Goi Eskola Politeknikoa | Mondragon Unibertsitatea

Course: 2023 / 2024 - Course planning

[MGA102] ANALYSIS OF POWER ELECTRONIC CONVERTERS

GENERAL INFORMATION

Studies UNIVERSTIY MASTER IN ENERGY AND POWER Subject POWER CONVERTER DESIGN, MODELLING

ELECTRONICS

Semester 1 Mention / Field of Course 1 specialisation

Character COMPULSORY

Credits 6

Language ENGLISH Plan 2015 **Modality** Adapted

Face-to-face

Hours/week 3.94 Total hours 71 class hours + 79 non-class hours = 150 total

hours

AND ANALYSIS

PROFESSORS

BARRENA BRUÑA, ION ANDONI AGIRRE VIANA, XABIER

REQUIRED PREVIOUS KNOWLEDGE

Subjects Knowledge

(No specific previous subjects required) (No previous knowledge required)

SKILLS

VERIFICA SKILLS

SPECIFIC

MGC02 - Analysing the thermal behaviour of the converter.

MGC04 - Evaluating the degree of compliance with the different regulations that apply to a converter.

MGC05 - Designing and innovating in the modulation techniques of a converter, in order to optimise its operation and performance.

CROSS

MGTR10 - To share knowledge, reasoning and conclusions with specialist and non-specialist audiences in clear, unambiguous ways.

MGTR11 - To lead work teams effectively and efficiently in order to achieve common goals.

MGTR12 - To analyse complex information and situations in the field of study, considering several solutions for each problem and making the right decision in a given context, taking social and ethical implications into account.

MGTR13 - To identify product or business development opportunities, managing the human and material resources adequately.

BASIC

M_CB9 - To share knowledge, conclusions and their rationale with specialised and lay audiences in a clear, unambiguous manner

CONTENTS

1. Introduction- High-Power Converter applications- Basic concepts2. Two-level VSC modulation strategies-Square wave modulation- PWM- Space Vector Modulation (SVM, SV-PWM)- Selective Harmonic Elimination Modul ation (SHEM)3. Basic VSC Multilevel Converters- NPC- Flying Caps- H-Bridge Cascaded multilevel4. Advanced VSC topologies- Hybrid multilevel converters- Modular Multilevel Converter (MMC)- Multipulse Converters using magnetic elements5. Current Source Converter topologies

LEARNING RESOURCES AND BIBLIOGRAPHY

Learning resources **Bibliography**

Subject notes

Slides of the subject

Computer practical training Specific Master Software

High-Power Converters and AC Drives, Bin Wu; ISBN: 978-0-471-73171-9, Wiley-IEEE Press